合肥市 2021 年高三第二次教学质量检测

数学试题(文科)参考答案及评分标准

一、选择题:本大题共12小题,每小题5分,共60分.

题号	1	2	3	4	5	6	7	8	9	10	11	12
答案	С	D	A	С	A	С	В	В	D	С	A	A

二、填空题: 本大题共4小题, 每小题5分, 共20分.

13. $\sqrt{10}$

14.
$$(-\sqrt{3}, \sqrt{3})$$

15**.** 2

16.
$$(n+1) \cdot 2^{n-2}$$

三、解答题: 本大题共6小题, 满分70分.

17. (本小题满分12分)

解: (1) 由正弦定理得 $2\sin A\cos B + 2\sin B\cos A = c\sin C$,

 $\therefore 2\sin(A+B) = c\sin C , \quad \therefore 2\sin C = c\sin C ,$

 \therefore sin $C \neq 0$, \therefore c = 2.6 分

(2):
$$C = \frac{\pi}{3}$$
, $a+b = 2\sqrt{2}$,

∴由余弦定理得 $c^2 = a^2 + b^2 - 2ab\cos C = a^2 + b^2 - ab = (a+b)^2 - 3ab = 8 - 3ab = 4$, 解得 $ab = \frac{4}{3}$,

18. (本小题满分12分)

(1)证明:如图,取 AB 的中点H ,连接CH .

 $\therefore BD = 3AD$, $\therefore D$ 为 AH 的中点, $\therefore DE // CH$.

AC = BC, $CH \perp AB$, $ED \perp AB$.

又:点E 在平面PAB 上的射影F 在线段PD 上,

 $\therefore EF \perp$ 平面 PAB , $\therefore EF \perp AB$.

∴ EF \cap ED = E, EF, DE \subset \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc PDE,

∴ AB ⊥ 平面 PDE . · · · · · · · · 6 分

(2) : $AB \perp$ 平面 PDE , : $AB \perp PE$.

::点 E 为棱 AC 的中点,PA = PC, $:: PE \perp AC$.

又 $: AC \cap AB = A$, AC, $AB \subset$ 平面 ABC , $: PE \perp$ 平面 ABC , $: PE \perp DE$.

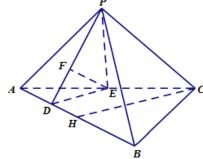
$$\therefore PA = PC = 2$$
, $AC = BC = 2\sqrt{2}$, $AC \perp BC$,

$$\therefore PE = \sqrt{2}$$
, $DE = 1$, $PD = \sqrt{3}$.

在 $Rt\Delta PDE$ 中,由 $Rt\Delta DEF \hookrightarrow Rt\Delta DPE$ 得, $DF = \frac{\sqrt{3}}{3}$,

∴ PD = 3DF, $\square PF = 2FD$,

所以三棱锥P-AEF 的体积为 $\frac{\sqrt{2}}{9}$.



19. (本小题满分12分)

解: (1) 由
$$y = c_1 \cdot e^{c_2 x}$$
 得 $\ln y = c_2 x + \ln c_1$, 即 $z = c_2 x + \ln c_1$, $\therefore c_2 = \frac{\sum_{i=1}^6 \left(x_i - \overline{x}\right) \left(z_i - \overline{z}\right)}{\sum_{i=1}^6 \left(x_i - \overline{x}\right)^2} = \frac{6.73}{17.5} \approx 0.38$.

 \mathbb{X} : $\overline{z} = c_2 \overline{x} + \ln c_1$, $0.38 \times 3.5 + \ln c_1 = 2.85$, $\ln c_1 = 1.52$.

∴
$$\ln y = 0.38x + 1.52$$
,即 $y = e^{0.38x + 1.52}$ 为所求的回归方程.8 分

(2) 根据(1) 回归方程得
$$y = e^{0.38x+1.52}$$
. 当 $x = 8$ 时, $y = e^{0.38x+1.52} \approx 95.58$, $\frac{95.58}{1.82} \approx 52.52$,

20. (本小题满分 12 分)

解: (1) 设椭圆的半焦距为c, 由题意得 $\frac{c}{a} = \frac{\sqrt{2}}{2}$, 即 $a^2 = 2c^2$.

:直径为BD 的圆过点E(-a, 0),B(0,-b),D(0, 4),

:
$$EB \perp ED$$
, $EB = 0$, $EB \cdot ED = 0$, $(a - b) \cdot (a + 4) = 0$, $a^2 - 4b = 0$.

(2) 由题意知,直线 MN 的斜率存在,设其方程为 y = kx + 4 , $M(x_1, y_1)$, $N(x_2, y_2)$.

$$\therefore x_1 + x_2 = -\frac{16k}{2k^2 + 1}, \ x_1 x_2 = \frac{24}{2k^2 + 1}$$

$$A(0, 2)$$
, $B(0, -2)$, $M(x_1, y_1)$, $N(x_2, y_2)$.

:.直线
$$AN$$
 的方程为 $y = \frac{y_2 - 2}{x_2}x + 2$,直线 BM 的方程为 $y = \frac{y_1 + 2}{x_1}x - 2$ $(x_1x_2 \neq 0, -2 \leq y_1, y_2 \leq 2)$,

$$\begin{cases} y = \frac{y_2 - 2}{x_2} x + 2 \\ y = \frac{y_1 + 2}{x_1} x - 2 \end{cases}$$
 消去 $x \neq \frac{x_2}{y_2 - 2} (y - 2) = \frac{x_1}{y_1 + 2} (y + 2)$, 解得 $y = \frac{2kx_1x_2 + 2x_1 + 6x_2}{3x_2 - x_1}$.

$$y-1 = \frac{2kx_1x_2 + 2x_1 + 6x_2}{3x_2 - x_1} - 1 = \frac{2kx_1x_2 + 3(x_1 + x_2)}{3x_2 - x_1} = \frac{\frac{48k}{2k^2 + 1} + 3(-\frac{16k}{2k^2 + 1})}{3x_2 - x_1} = 0$$

21. (本小题满分12分)

解: (1) 当a=1 时, $f(x)=(x-2)e^x+(x+2)$, $f'(x)=(x-1)e^x+1$.

$$\Rightarrow g(x) = f'(x) = (x-1)e^x + 1$$
, $g'(x) = xe^x$.

 $\exists x \in (-\infty, 0)$ 时, g'(x) < 0 ; $\exists x \in (0, +\infty)$ 时, g'(x) > 0 .

 $\therefore g(x)$ 在 $(-\infty, 0)$ 上单调递减,在 $(0, +\infty)$ 上单调递增,

$$\therefore g(x) \ge g(0) = f'(0) = 0$$
,即 $f'(x) \ge 0$, $\therefore f(x)$ 在R上是增函数.

(2) $\stackrel{\text{def}}{=} x = -2 \text{ pr}, \quad f(x) < 0, \quad a \in \mathbb{R}.$

$$f(x) = (x-2)e^x + a(x+2) \le 0$$
, $\mathbb{P}(a(x+2) \le (2-x)e^x$. $\exists x \in (-2, 1] \text{ by, } a \le \frac{(2-x)e^x}{x+2}$.

$$\Rightarrow F(x) = \frac{2-x}{x+2}e^x$$
, $F'(x) = \left(\frac{2-x}{x+2}e^x\right)' = -\frac{x^2}{(x+2)^2}e^x \le 0$,

 $\therefore F(x)$ 在(-2,1]上单调递减,F(x)在(-2,1]上最小值为 $F(1)=\frac{e}{3}$, $\therefore a \leq \frac{e}{3}$.

$$\stackrel{\underline{\mathsf{M}}}{=} x \in [-4, -2)$$
 $\stackrel{\underline{\mathsf{M}}}{=} , \quad a \ge \frac{(2-x)e^x}{x+2}.$

$$: F(x)$$
在[-4,-2)上单调递减, $F(x)$ 在[-4,-2)上最大值为 $F(-4) = -\frac{3}{e^4}$, $: a \ge -\frac{3}{e^4}$.

解: (1) 由
$$\begin{cases} x = \frac{\sqrt{2}}{2} \left(t^{\frac{1}{4}} - t^{-\frac{1}{4}} \right), \\ y = \sqrt{2} \left(t^{\frac{1}{4}} + t^{-\frac{1}{4}} \right) \end{cases}$$
 得
$$\begin{cases} \sqrt{2}x = t^{\frac{1}{4}} - t^{-\frac{1}{4}}, \\ \frac{1}{\sqrt{2}}y = t^{\frac{1}{4}} + t^{-\frac{1}{4}}. \end{cases}$$
 两式平方相减得
$$\frac{1}{2}y^2 - 2x^2 = 4, \quad \text{即} \frac{y^2}{8} - \frac{x^2}{2} = 1.$$

又:
$$y = \sqrt{2} \left(t^{\frac{1}{4}} + t^{-\frac{1}{4}} \right) \ge 2\sqrt{2}$$
, :曲线 C_1 直角坐标方程为 $\frac{y^2}{8} - \frac{x^2}{2} = 1 \left(y \ge 2\sqrt{2} \right)$.

曲线
$$C_2$$
: $\rho\sin\left(\theta-\frac{\pi}{4}\right)-2\sqrt{2}=0$, $\rho\sin\theta-\rho\cos\theta-4=0$, 即 $y-x-4=0$,

(2) 设曲线
$$C_2$$
 的参数方程为
$$\begin{cases} x = -2 + \frac{\sqrt{2}}{2}t, \\ y = 2 + \frac{\sqrt{2}}{2}t. \end{cases}$$
 (t 为参数).

代入曲线
$$C_1$$
 方程得 $\left(2+\frac{\sqrt{2}}{2}t\right)^2-4\left(-2+\frac{\sqrt{2}}{2}t\right)^2=8$,即 $3t^2-20\sqrt{2}t+40=0$.

$$\Delta = 320 > 0$$
 , 设方程的两个实数根为 t_1 , t_2 , 则 $t_1 + t_2 = \frac{20\sqrt{2}}{3}$, $t_1 t_2 = \frac{40}{3}$,

23. (本小题满分10分)

证明: (1) 由 a, b, c 都是正数得, $3 = a + b + c \ge 3\sqrt[3]{abc}$, $\therefore \sqrt[3]{abc} \le 1$,即 $abc \le 1$,

$$\therefore \frac{1}{ab} + \frac{1}{bc} + \frac{1}{ac} = \frac{a+b+c}{abc} = \frac{3}{abc} \ge 3 \text{ , } \quad \mathbb{N} \frac{1}{ab} + \frac{1}{bc} + \frac{1}{ac} \ge 3 \text{ (当且仅当} \\ a = b = c = 1 等号成立). \dots 5 分$$

(2):
$$\frac{2}{a+\sqrt{bc}} + \frac{2}{b+\sqrt{ac}} + \frac{2}{c+\sqrt{ab}} \ge \frac{4}{2a+b+c} + \frac{4}{2b+a+c} + \frac{4}{2c+a+b} = \frac{4}{a+3} + \frac{4}{b+3} + \frac{4}{c+3}$$
,
 X : $a+b+c=3$, $(a+3)+(b+3)+(c+3)=12$,

$$\mathbb{X} : a+b+c=3$$
, $(a+3)+(b+3)+(c+3)=12$

$$\therefore \frac{4}{a+3} + \frac{4}{b+3} + \frac{4}{c+3} = \frac{4}{12} \Big[(a+3) + (b+3) + (c+3) \Big] \Big(\frac{1}{a+3} + \frac{1}{b+3} + \frac{1}{c+3} \Big)$$

$$\geq \frac{1}{3} \left\lceil \sqrt{a+3} \cdot \sqrt{\frac{1}{a+3}} + \sqrt{b+3} \cdot \sqrt{\frac{1}{b+3}} + \sqrt{c+3} \cdot \sqrt{\frac{1}{c+3}} \right\rceil^2 = 3$$

$$\therefore \frac{2}{a+\sqrt{bc}} + \frac{2}{b+\sqrt{ac}} + \frac{2}{c+\sqrt{ab}} \ge 3 \text{ (当且仅当} a = b = c=1 等号成立). \dots 10 分$$